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Amdhal's Law proposes that parallel codes are combinations of parallel and serial 
tasks. In many cases these task are inherently parallel and can be decomposed and 
performed asynchronously. Each task operates on a dedicated subset of processors 
with highly scalable tasks operating on very large numbers of processors and less 
scalable tasks (like IO) operating on a smaller number. By moving to a Multiple 
Instruction Multiple Data paradigm codes can achieve greater parallel efficiency 
and scale further. This paper specifically addresses the implementation and 
experiences of optimising an application important to HECToR by asynchronously 
writing output data via a set of dedicated I/O server processors. 
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Introduction 
Jaguar, a Cray XT5™, was the first system to 

sustain a petaflop on a real world application and has 
continued to demonstrate high levels of performance 
on real applications. This comes about from the ever 
increasing number of cores that successive 
generations of MPP architectures offer and the most 
successful applications have at their heart algorithms 
that will scale to very large numbers of cores. 

The I/O systems of these architectures are not 
built with the same high levels of parallelism as the 
computational components. While the computational 
section may have hundreds of thousands of cores, the 
I/O system will typically bep constructed from 
hundreds of service threads.  

Larkin (1), Crosby (2), Shan and Shalf (3) and  
have demonstrated that the Lustre filesystem used by 
Cray XT™ achieves near peak performance when 
using only a fraction of the total computational cores 
available, with performance increasingly only 
gradually as more processors are added. 

Previous papers have concentrated on methods 
and techniques that improve the peak performance of 
applications writing data to disk, however the issue 
still remains that in the majority of applications many 
thousands of cores are involved in I/O with no 
improvement in performance. Instead this paper 
outlines a technique for running I/O operations in 
parallel by using a subset of dedicated processors. 
Though not necessarily universally applicable to all 
forms of I/O in all types of application, it proves most 
suitable to applications performing “checkpoint” 
operations where a large amount of data is written to 
disk in a short period.  

Many applications adopt the Single Instruction 
Multiple Data (SIMD) paradigm to solve problems in 
parallel. Each processor performs the same actions but 
on different sections of the dataset, occasionally the 
master process may perform some tasks on their own. 
This tends to favour a phased approach, where 

sections of computation are followed by sections of 
communication and/or I/O operations, with all 
processors involved in all aspects. 

This paper advocates adopting a Multiple 
Instruction Multiple Data (MIMD) paradigm where 
processors are divided into subsets that are dedicated 
to discrete sets of tasks, specifically splitting 
computation from I/O. This allows computation to 
continue simultaneously with I/O, improving the 
overall performance of the application. 

This paper first considers HELIUM which is 
heavily used on the HECToR Cray XT5h™ service. The 
code simulates the interaction of high intensity laser 
pulses with the electrons of a helium atom by solving 
the time-dependent Schrödinger equation. It is a 
classic boundary decomposition problem, except that 
the symmetry of the problem allows users only to 
solve the upper triangle of the two-dimensional 
domain. The code scales exceptionally well and 
exhibits weak scaling up to hundreds of thousands of 
processors, this type of scaling generates large 
amounts of data, especially during the regular 
checkpoints. Efforts have been undertaken by the Cray 
Centre of Excellence for HECToR to optimise HELIUM’s 
I/O performance on very large numbers of processors. 

Overlapping Computation and I/O  
HELIUM, like many HPC applications, is an 

iterative code that performs regular number of time 
steps and then writes the results to disk. The code 
performs regular file-per-process checkpoints to disk 
as part of the scientific output and as a point to restore 
the data from. During output operations the 
computation is suspended until all data is written to 
disk in the form of individual files for each processor. 
As all writing occurs almost simultaneously on each 
processor, it can place significant demand on the lustre 
file system. 

The I/O in Helium is implemented efficiently 
with large writes to individual files, this requires little 
buffering, file locking or management. It achieves a 
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high percentage of peak I/O bandwidth which means 
traditional approaches to I/O optimization will not 
make any worthwhile improvements.   However as it is 
a weak scaling code, as the process count increases the 
checkpoint volume increases as well but after only a 
few hundred processors the I/O system reaches its 
peak performance. This results in checkpoint 
operations becoming an increasingly large component 
of the overall job time as the application scales. 

There is sufficient time spent in computation 
between checkpoints that writing data to disk could be 
overlapped with the continuing computation. This 
would offer a performance advantage to the majority 
of checkpoints where there is further computation, but 
not the final checkpoint. It would also require data to 
be cached in memory and written out asynchronously, 
without stalling the computation. 

There are several potential methods of doing 
this, the Fortran 2003 standard provides a method for 
asynchronous I/O however it is not universally 
implemented across compilers and may revert to 
synchronous operation. The MPI-IO interface supports 
asynchronously write operations, however the 
simulation does not currently use MPI-IO and the 
output format does not fit well with the I/O model. 
Alternatively it is possible to spawn a small number of 
additional nodes as I/O servers to perform the writes 
to disk. Though this adds an additional degree of 
complexity to many applications it ensures the code 
will work with every Fortran compiler and allows for 
more sophisticated serial processing of data as it is 
written out. To maintain the efficiency of the code only 
a small number of I/O servers should be spawned with 
a high ratio of compute processes to I/O processes.  

Implementation in MPI 
Data to be written to disk has to be cached in a 

separate memory location to prevent it being 
overwritten during by subsequent computation. This 
has to be memory from the compute node, not only 
because the data volume is larger than the buffer 
capacity of an individual node, but also because it is 
counter-productive to direct large volumes of data 
through a single link in a short time as introduces a 
bottleneck. Instead, once each compute processor’s 
data has been safely cached locally it can be 
individually transferred to its I/O server to be written 
to disk. This could be done by  initiating an 
asynchronous MPI_ISend call from each compute 
node to its I/O server and having the I/O Server 
process the receives in turn, however with potentially 
large numbers of compute nodes to each I/O server 
this could generate large numbers of simultaneous 
outstanding point-to-point messages that could 
potential degrade performance. Instead the I/O Server 
must be able to limit the number of messages it 
receives. 

Instead of the compute nodes pre-emptively 
sending messages to the I/O server, they must wait for 

a “ready” message from the I/O server before sending 
the data. By controlling the number of “ready” 
messages it sends, the I/O server limits the number of 
simultaneous incoming messages. However, this 
requires the compute server to acknowledge and act 
upon the “ready” message. This could be achieved by 
blocking the compute node, which is no better than the 
original scheme, or by regularly polling for the ready 
message. This introduces further complexity to the 
application as regular checks have to be introduced 
which potentially introduce load imbalance, however 
the poll has to be frequent enough that the delay 
between the I/O server sending a “ready” message and 
the compute node acting upon it is small enough that it 
does not delay the overall output of data.  

 

Figure 1: Waiting time on compute processes per 
checkpoint. 

 MPI communicators are very useful for co-
ordinating the subsets of processors. 
MPI_COMM_WORLD can be split into a compute 
communicator which replaces its parent on the 
compute side and an I/O communicator. Separate 
communicators that group each I/O Server as rank 0 
and its compute clients also proved useful. I/O servers 
were selected at even intervals across the ranks of the 
Global Communicator to prevent clustering of I/O 
servers on single multi-core nodes. 

Performance on the XT5™ 

Table 1:  Wallclock time for compute nodes to perform a 
checkpoint with and without I/O servers 
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to evaluate the performance of this scheme. Each run 
used an additional 1% of processors acting as I/O 
servers (rounded up to a whole number of nodes). 
Experiments ran in an intensive I/O mode, running for 
250 computational timesteps and producing a 
checkpoint every 50 timesteps.  

Figure 1 shows the average wallclock time that 
was spent by compute nodes waiting for checkpoints 
to complete with and without I/O servers. The figures 
are the averaged over the 5 checkpoints and the 
volume of data written by each processor is constant 
at 44.25 MB per processor per checkpoint. The figures 
clearly show that the measured time in writing data to 
disk is significantly reduced using the I/O servers. 

Figure 2 plots the average time between 
completed checkpoints, so includes the time of 
computation and check pointing. Though with smaller 
numbers of processors (below 4096), using I/O 
servers is slight slower than using larger numbers, as 
the volume of data increases with the increased 
number of processors using I/O servers offers an 
~11% in runtime performance for a ~1% cost in 
processors. 

 

Figure 2 Average measured wall clock time 
between completed checkpoints. 

Efficiency of the I/O Servers 
The I/O servers report the percentage of time 

they were busy processing compute node data 
compared to sitting wait for data to be received. Table 
2 presents these figures for the Cray XT5™ runs and 
shows that the I/O servers are busiest when operating 
on large numbers of processors, but still spend almost 
three quarters of their time idle.  

Table 2: Measured load on the I/O Server during 
operation 

If ultimate efficiency is required, then the 
number of I/O servers could be reduced to keep the 
server as close to 100% busy as possible, however this 
increases the risk that the checkpoint data is 
incomplete should the job stop unexpectedly. To 
achieve the greatest I/O performance a larger number 
of I/O servers could be used, but would be sitting idle 
once the data had been written to disk. 

Using SHMEM For I/O Server 
Communication 

For the I/O server to efficiently transfer data the 
number of polls the compute node makes, , which 

is the product of the frequency of the poll, , and 

the compute time, ,  must  be greater than the 

number of compute nodes per IO server .  i.e  

 

The initial I/O server implementation places the 
user is in control of the frequency of polls for new 
messages which reduces the potential number. An 
alternative approach is to use the SHMEM API’s 
remote push and get functionality. 

Rather than pushing the data from the compute 
node to the I/O server, instead the compute processor 
copies the output data to a symmetrically allocated 
buffer and sets a local tag declaring the data is ready to 
collect. The I/O server constantly polls the tag on the 
compute node watching for a state change, when it 
occurs it pulls the data from the compute node to the 
I/O server and saves it to disk. Once this is complete it 
changes the notification area on the compute 
processor to confirm receipt of the data.  

This approach offers numerous advantages over 
the MPI message based approach. The requirement for 
the compute server to check for messages from the I/O 
server is removed from the user and placed on the 
underlying SHMEM implementation. This means there 
can be a much higher frequency of polling and on 
upcoming network architectures, hardware support 
for the transfer. The number of messages going to the 
I/O server is still limited which prevents any 
performance problems associated with overloading. 
The disadvantage is that code becomes a hybrid 
communications code, and while integration between 
the two libraries is excellent on the Cray  XT™, users 
are required to understand two different paradigms. 

Shmem vs MPI Performance 

Table 3 Performance Comparison MPI vs Shmem 
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Using SHMEM to provide I/O servers requires 
fewer changes to the source code of the compute 
nodes compared to using MPI. However, it will 
potentially increase the number and frequency of 
messages between the I/O server and the compute 
nodes during idle periods. In the initial SHMEM 
implementation the I/O server continually pings the 
compute nodes, looking for a change of state. By 
timing in more detail the lengths of individual time 
steps and boundary exchanges both when the I/O 
server is transferring data and when it has finished it 
is possible to quantify the cost the I/O server 
implementation has on the compute stages.  

Table 3 shows the results of high resolution 
runs that were performed on 4056 Cray XT6™ 
compute nodes and with 48 I/O servers on a file 
system with far fewer OSTs. These results show that 
straight off the MPI implementation outperforms 
SHMEM, which is to be expected on this architecture. 
They also show that it does take additional time to 
perform computation while the I/O server is active, 
the increased length of timestep is labelled the “Cost in 
I/O”. This value is quite small, but is measurable, 
however because the majority of time steps are not 
during the I/O the total increase in run length, the 
“Real Cost”, is also quiet small, alleviating concerns 
that the I/O servers are displacing time spent doing 
I/O rather than masking it. 

The SHMEM implementation places a more 
uniform load on the compute nodes as it constantly 
polls them for status updates. It may be beneficial on 
the current architecture to introduce less frequent 
polling during idle periods to prevent performance 
interference. It is also expected with the move to the 
Gemini network architecture, which more efficiently 
supports many concurrent small messages, that the 
SHMEM implementation would see a significant 
improvement. 

Conclusions 
Writing to disk can constitute a significant 

proportion of runtime in applications that generate 
large volumes of data. While the number of parallel 
cores available to an application for computation is 
very large, the I/O performance will reach its peak 
when driven by far fewer processors. Asynchronous 
I/O offers the opportunity to overlap computation and 
communication with writing data to disk. I/O servers 
are a technique for implementing asynchronous I/O 
using standard networking constructs and offer 
additional flexibility for data structures that do not fit 
the standard paradigms. It also offers opportunities to 
perform additional serial processing of data that might 
otherwise require secondary post-processing. 

The technique has been demonstrated with two 
communication libraries, MPI and SHMEM on the Cray 
XT5™ and Cray XT6™ architectures and demonstrates 
near complete masking of I/O from computation 

without significantly affecting the performance of the 
computational sections. This significantly improves 
the effective performance of codes with significant 
output requirements and allows them to scale to the 
largest numbers of processors. 

 Using MPI to implement the I/O servers 
requires greater modification of existing code, but in 
the current implementation offers slightly improved 
performance over using SHMEM. Further performance 
improvements are expected on the next generation of 
Cray architectures which offers increased bandwidth, 
reduced latency and native support for remote 
memory transfers.  
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