
CUG Proceedings 2010 1

Using I/O Servers to Improve Application Performance on
Cray XT™ Technology

Thomas Edwards, Kevin Roy
Cray Centre of Excellence for HECToR

Amdhal's Law proposes that parallel codes are combinations of parallel and serial
tasks. In many cases these task are inherently parallel and can be decomposed and
performed asynchronously. Each task operates on a dedicated subset of processors
with highly scalable tasks operating on very large numbers of processors and less
scalable tasks (like IO) operating on a smaller number. By moving to a Multiple
Instruction Multiple Data paradigm codes can achieve greater parallel efficiency
and scale further. This paper specifically addresses the implementation and
experiences of optimising an application important to HECToR by asynchronously
writing output data via a set of dedicated I/O server processors.

Keywords: I/O Server, Lustre, SHMEM, HELIUM, Asynchronous

Introduction
Jaguar, a Cray XT5™, was the first system to

sustain a petaflop on a real world application and has
continued to demonstrate high levels of performance
on real applications. This comes about from the ever
increasing number of cores that successive
generations of MPP architectures offer and the most
successful applications have at their heart algorithms
that will scale to very large numbers of cores.

The I/O systems of these architectures are not
built with the same high levels of parallelism as the
computational components. While the computational
section may have hundreds of thousands of cores, the
I/O system will typically bep constructed from
hundreds of service threads.

Larkin (1), Crosby (2), Shan and Shalf (3) and
have demonstrated that the Lustre filesystem used by
Cray XT™ achieves near peak performance when
using only a fraction of the total computational cores
available, with performance increasingly only
gradually as more processors are added.

Previous papers have concentrated on methods
and techniques that improve the peak performance of
applications writing data to disk, however the issue
still remains that in the majority of applications many
thousands of cores are involved in I/O with no
improvement in performance. Instead this paper
outlines a technique for running I/O operations in
parallel by using a subset of dedicated processors.
Though not necessarily universally applicable to all
forms of I/O in all types of application, it proves most
suitable to applications performing “checkpoint”
operations where a large amount of data is written to
disk in a short period.

Many applications adopt the Single Instruction
Multiple Data (SIMD) paradigm to solve problems in
parallel. Each processor performs the same actions but
on different sections of the dataset, occasionally the
master process may perform some tasks on their own.
This tends to favour a phased approach, where

sections of computation are followed by sections of
communication and/or I/O operations, with all
processors involved in all aspects.

This paper advocates adopting a Multiple
Instruction Multiple Data (MIMD) paradigm where
processors are divided into subsets that are dedicated
to discrete sets of tasks, specifically splitting
computation from I/O. This allows computation to
continue simultaneously with I/O, improving the
overall performance of the application.

This paper first considers HELIUM which is
heavily used on the HECToR Cray XT5h™ service. The
code simulates the interaction of high intensity laser
pulses with the electrons of a helium atom by solving
the time-dependent Schrödinger equation. It is a
classic boundary decomposition problem, except that
the symmetry of the problem allows users only to
solve the upper triangle of the two-dimensional
domain. The code scales exceptionally well and
exhibits weak scaling up to hundreds of thousands of
processors, this type of scaling generates large
amounts of data, especially during the regular
checkpoints. Efforts have been undertaken by the Cray
Centre of Excellence for HECToR to optimise HELIUM’s
I/O performance on very large numbers of processors.

Overlapping Computation and I/O
HELIUM, like many HPC applications, is an

iterative code that performs regular number of time
steps and then writes the results to disk. The code
performs regular file-per-process checkpoints to disk
as part of the scientific output and as a point to restore
the data from. During output operations the
computation is suspended until all data is written to
disk in the form of individual files for each processor.
As all writing occurs almost simultaneously on each
processor, it can place significant demand on the lustre
file system.

The I/O in Helium is implemented efficiently
with large writes to individual files, this requires little
buffering, file locking or management. It achieves a

CUG Proceedings 2010 2

high percentage of peak I/O bandwidth which means
traditional approaches to I/O optimization will not
make any worthwhile improvements. However as it is
a weak scaling code, as the process count increases the
checkpoint volume increases as well but after only a
few hundred processors the I/O system reaches its
peak performance. This results in checkpoint
operations becoming an increasingly large component
of the overall job time as the application scales.

There is sufficient time spent in computation
between checkpoints that writing data to disk could be
overlapped with the continuing computation. This
would offer a performance advantage to the majority
of checkpoints where there is further computation, but
not the final checkpoint. It would also require data to
be cached in memory and written out asynchronously,
without stalling the computation.

There are several potential methods of doing
this, the Fortran 2003 standard provides a method for
asynchronous I/O however it is not universally
implemented across compilers and may revert to
synchronous operation. The MPI-IO interface supports
asynchronously write operations, however the
simulation does not currently use MPI-IO and the
output format does not fit well with the I/O model.
Alternatively it is possible to spawn a small number of
additional nodes as I/O servers to perform the writes
to disk. Though this adds an additional degree of
complexity to many applications it ensures the code
will work with every Fortran compiler and allows for
more sophisticated serial processing of data as it is
written out. To maintain the efficiency of the code only
a small number of I/O servers should be spawned with
a high ratio of compute processes to I/O processes.

Implementation in MPI
Data to be written to disk has to be cached in a

separate memory location to prevent it being
overwritten during by subsequent computation. This
has to be memory from the compute node, not only
because the data volume is larger than the buffer
capacity of an individual node, but also because it is
counter-productive to direct large volumes of data
through a single link in a short time as introduces a
bottleneck. Instead, once each compute processor’s
data has been safely cached locally it can be
individually transferred to its I/O server to be written
to disk. This could be done by initiating an
asynchronous MPI_ISend call from each compute
node to its I/O server and having the I/O Server
process the receives in turn, however with potentially
large numbers of compute nodes to each I/O server
this could generate large numbers of simultaneous
outstanding point-to-point messages that could
potential degrade performance. Instead the I/O Server
must be able to limit the number of messages it
receives.

Instead of the compute nodes pre-emptively
sending messages to the I/O server, they must wait for

a “ready” message from the I/O server before sending
the data. By controlling the number of “ready”
messages it sends, the I/O server limits the number of
simultaneous incoming messages. However, this
requires the compute server to acknowledge and act
upon the “ready” message. This could be achieved by
blocking the compute node, which is no better than the
original scheme, or by regularly polling for the ready
message. This introduces further complexity to the
application as regular checks have to be introduced
which potentially introduce load imbalance, however
the poll has to be frequent enough that the delay
between the I/O server sending a “ready” message and
the compute node acting upon it is small enough that it
does not delay the overall output of data.

Figure 1: Waiting time on compute processes per
checkpoint.

 MPI communicators are very useful for co-
ordinating the subsets of processors.
MPI_COMM_WORLD can be split into a compute
communicator which replaces its parent on the
compute side and an I/O communicator. Separate
communicators that group each I/O Server as rank 0
and its compute clients also proved useful. I/O servers
were selected at even intervals across the ranks of the
Global Communicator to prevent clustering of I/O
servers on single multi-core nodes.

Performance on the XT5™

Table 1: Wallclock time for compute nodes to perform a
checkpoint with and without I/O servers

Experiments were run on a Cray XT5™ system

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

180.0

200.0

64 512 4096 32768

Ti
m

e
 (

s)

Number of Processors

No I/O Servers

I/O Servers

Compute (+ I/O
Servers)

CP time
Compute only

CP time +
Servers

136(+8) 1.2 0.4

528(+12) 15.9 0.6

2080(+32) 98.0 0.6

32896(+332) 126.7 1.0

46360(+464) 178.7 1.4

CUG Proceedings 2010 3

to evaluate the performance of this scheme. Each run
used an additional 1% of processors acting as I/O
servers (rounded up to a whole number of nodes).
Experiments ran in an intensive I/O mode, running for
250 computational timesteps and producing a
checkpoint every 50 timesteps.

Figure 1 shows the average wallclock time that
was spent by compute nodes waiting for checkpoints
to complete with and without I/O servers. The figures
are the averaged over the 5 checkpoints and the
volume of data written by each processor is constant
at 44.25 MB per processor per checkpoint. The figures
clearly show that the measured time in writing data to
disk is significantly reduced using the I/O servers.

Figure 2 plots the average time between
completed checkpoints, so includes the time of
computation and check pointing. Though with smaller
numbers of processors (below 4096), using I/O
servers is slight slower than using larger numbers, as
the volume of data increases with the increased
number of processors using I/O servers offers an
~11% in runtime performance for a ~1% cost in
processors.

Figure 2 Average measured wall clock time
between completed checkpoints.

Efficiency of the I/O Servers
The I/O servers report the percentage of time

they were busy processing compute node data
compared to sitting wait for data to be received. Table
2 presents these figures for the Cray XT5™ runs and
shows that the I/O servers are busiest when operating
on large numbers of processors, but still spend almost
three quarters of their time idle.

Table 2: Measured load on the I/O Server during
operation

If ultimate efficiency is required, then the
number of I/O servers could be reduced to keep the
server as close to 100% busy as possible, however this
increases the risk that the checkpoint data is
incomplete should the job stop unexpectedly. To
achieve the greatest I/O performance a larger number
of I/O servers could be used, but would be sitting idle
once the data had been written to disk.

Using SHMEM For I/O Server
Communication

For the I/O server to efficiently transfer data the
number of polls the compute node makes, , which

is the product of the frequency of the poll, , and

the compute time, , must be greater than the

number of compute nodes per IO server . i.e

The initial I/O server implementation places the
user is in control of the frequency of polls for new
messages which reduces the potential number. An
alternative approach is to use the SHMEM API’s
remote push and get functionality.

Rather than pushing the data from the compute
node to the I/O server, instead the compute processor
copies the output data to a symmetrically allocated
buffer and sets a local tag declaring the data is ready to
collect. The I/O server constantly polls the tag on the
compute node watching for a state change, when it
occurs it pulls the data from the compute node to the
I/O server and saves it to disk. Once this is complete it
changes the notification area on the compute
processor to confirm receipt of the data.

This approach offers numerous advantages over
the MPI message based approach. The requirement for
the compute server to check for messages from the I/O
server is removed from the user and placed on the
underlying SHMEM implementation. This means there
can be a much higher frequency of polling and on
upcoming network architectures, hardware support
for the transfer. The number of messages going to the
I/O server is still limited which prevents any
performance problems associated with overloading.
The disadvantage is that code becomes a hybrid
communications code, and while integration between
the two libraries is excellent on the Cray XT™, users
are required to understand two different paradigms.

Shmem vs MPI Performance

Table 3 Performance Comparison MPI vs Shmem

300

350

400

450

500

550

600

650

700

64 512 4096 32768

Ti
m

e
 (

s)

Number of Processors

No I/O Servers

I/O Servers

Compute (+ I/O Servers) Busy

136(+8) 1.3%

528(+12) 3.3%

2080(+32) 7.6%

32896(+332) 26.1%

46360(+464) 23.3%

Comms Avg T/S Cost in I/O % in I/O Real Cost

MPI 9.31s 2.33% 14% 0.32%

Shmem 9.72s 0.19% 25% 0.05%

CUG Proceedings 2010 4

Using SHMEM to provide I/O servers requires
fewer changes to the source code of the compute
nodes compared to using MPI. However, it will
potentially increase the number and frequency of
messages between the I/O server and the compute
nodes during idle periods. In the initial SHMEM
implementation the I/O server continually pings the
compute nodes, looking for a change of state. By
timing in more detail the lengths of individual time
steps and boundary exchanges both when the I/O
server is transferring data and when it has finished it
is possible to quantify the cost the I/O server
implementation has on the compute stages.

Table 3 shows the results of high resolution
runs that were performed on 4056 Cray XT6™
compute nodes and with 48 I/O servers on a file
system with far fewer OSTs. These results show that
straight off the MPI implementation outperforms
SHMEM, which is to be expected on this architecture.
They also show that it does take additional time to
perform computation while the I/O server is active,
the increased length of timestep is labelled the “Cost in
I/O”. This value is quite small, but is measurable,
however because the majority of time steps are not
during the I/O the total increase in run length, the
“Real Cost”, is also quiet small, alleviating concerns
that the I/O servers are displacing time spent doing
I/O rather than masking it.

The SHMEM implementation places a more
uniform load on the compute nodes as it constantly
polls them for status updates. It may be beneficial on
the current architecture to introduce less frequent
polling during idle periods to prevent performance
interference. It is also expected with the move to the
Gemini network architecture, which more efficiently
supports many concurrent small messages, that the
SHMEM implementation would see a significant
improvement.

Conclusions
Writing to disk can constitute a significant

proportion of runtime in applications that generate
large volumes of data. While the number of parallel
cores available to an application for computation is
very large, the I/O performance will reach its peak
when driven by far fewer processors. Asynchronous
I/O offers the opportunity to overlap computation and
communication with writing data to disk. I/O servers
are a technique for implementing asynchronous I/O
using standard networking constructs and offer
additional flexibility for data structures that do not fit
the standard paradigms. It also offers opportunities to
perform additional serial processing of data that might
otherwise require secondary post-processing.

The technique has been demonstrated with two
communication libraries, MPI and SHMEM on the Cray
XT5™ and Cray XT6™ architectures and demonstrates
near complete masking of I/O from computation

without significantly affecting the performance of the
computational sections. This significantly improves
the effective performance of codes with significant
output requirements and allows them to scale to the
largest numbers of processors.

 Using MPI to implement the I/O servers
requires greater modification of existing code, but in
the current implementation offers slightly improved
performance over using SHMEM. Further performance
improvements are expected on the next generation of
Cray architectures which offers increased bandwidth,
reduced latency and native support for remote
memory transfers.

About the Authors
 Kevin Roy is a member of the Cray Centre of
Excellence for HECToR. He joined the Centre of
Excellence in October 2007 from the Cray
benchmarking team. Prior to this he was part of the UK
National Supercomputing facility, CSAR.

Thomas Edwards joined the Cray Centre of
Excellence for HECToR in September 2009 after
completing a PhD in HPC Optimisation of Fusion
Applications at EPCC, University of Edinburgh. Prior to
this he worked on the Ported Unified Model for the UK
Met Office.

References
1. Practical Examples for Efficient I/O on Cray XT

Systems. Larkin, Jeff. ORNL : s.n., 2009. CUG 2009
Proceedings. p. 12.

2. Perforance Characteristics of the Lustre File
System on the Cray XT5 with Respect to Application I/O
Patterns. Crosby, Lonnie D. ORNL : s.n., 2009.

3. Using IOR to Analyze the I/O performance for
HPC Platforms. Hongzhang Shan, John Shalf. Seattle :
CUG, 2007.

